Large magnetocaloric effect and adiabatic demagnetization refrigeration with YbPt2Sn
نویسندگان
چکیده
Adiabatic demagnetization is currently gaining strong interest in searching for alternatives to (3)He-based refrigeration techniques for achieving temperatures below 2 K. The main reasons for that are the recent shortage and high price of the rare helium isotope (3)He. Here we report the discovery of a large magnetocaloric effect in the intermetallic compound YbPt2Sn, which allows adiabatic demagnetization cooling from 2 K down to 0.2 K. We demonstrate this with a home-made refrigerator. Other materials, for example, paramagnetic salts, are commonly used for the same purpose but none of them is metallic, a severe limitation for low-temperature applications. YbPt2Sn is a good metal with an extremely rare weak magnetic coupling between the Yb atoms, which prevents them from ordering above 0.25 K, leaving enough entropy free for use in adiabatic demagnetization cooling. The large volumetric entropy capacity of YbPt2Sn guarantees also a good cooling power.
منابع مشابه
Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling
Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with (3)He gas are widely used for cooling below 1 K. However, usag...
متن کاملGiant rotating magnetocaloric effect induced by highly texturing in polycrystalline DyNiSi compound
Large rotating magnetocaloric effect (MCE) has been observed in some single crystals due to strong magnetocrystalline anisotropy. By utilizing the rotating MCE, a new type of rotary magnetic refrigerator can be constructed, which could be more simplified and efficient than the conventional one. However, compared with polycrystalline materials, the high cost and complexity of preparation for sin...
متن کاملWho discovered the magnetocaloric effect? Warburg, Weiss, and the connection between magnetism and heat
A magnetic body changes its thermal state when subjected to a changing magnetic field. In particular, if done under adiabatic conditions, its temperature changes. For the past 15 years the magnetocaloric effect has been the focus of significant research due to its possible application for efficient refrigeration near room temperature. At the same time, it has become common knowledge within the ...
متن کاملQuantum signatures of a molecular nanomagnet in direct magnetocaloric measurements
Geometric spin frustration in low-dimensional materials, such as the two-dimensional kagome or triangular antiferromagnetic nets, can significantly enhance the change of the magnetic entropy and adiabatic temperature following a change in the applied magnetic field, that is, the magnetocaloric effect. In principle, an equivalent outcome should also be observable in certain high-symmetry zero-di...
متن کاملReview of the magnetocaloric effect in manganite materials
A thorough understanding of the magnetocaloric properties of existing magnetic refrigerant materials has been an important issue in magnetic refrigeration technology. This paper reviews a new class of magnetocaloric material, that is, the ferromagnetic perovskite manganites (R1 xMxMnO3, where R 1⁄4 La, Nd, Pr and M 1⁄4 Ca, Sr, Ba, etc.). The nature of these materials with respect to their magne...
متن کامل